• Hubbard Churchill posted an update 2 months, 3 weeks ago

    The consumer acceptance of PBMA remains unsatisfactory but is continually improving. Based on those knowledge, future research opportunities include developing more effective strategies for consumer education, providing more scientific evidence for the health properties of PBMA, finding more suitable protein sources to improve the quality of the final products, improving the appearance and flavor, further examining and securing the chemical safety, exploring the structure formation mechanism during the extraction or shearing processes, and developing methods and standards for a quality evaluation of PBMA.The use of starch in food systems in many instances relies on its thickening and gelling capacity. When native starches fail to match process and/or product-specific requirements, starches are physically and/or chemically modified to meet end-use demands. Evidently, differences between starches of varying botanical origin have to be considered when selecting or modifying starches for particular applications. Potato starch (PS) ranks third in world production after maize and wheat starches. Its unique properties differ from those of cereal and pulse starches and are directly related to its molecular structure and organization. This review summarizes the differences between PS and cereal and pulse starches and how they set it apart in terms of gelatinization, pasting, gelation, and retrogradation. Recent advances in improving PS pasting and gelation using enzyme technology and mineral ions are also described.Recently, there has been growing interest in implementing innovative nanoscience-based technologies to improve the health, safety, and quality of food products. A major thrust in this area has been to use nanoemulsions because they can easily be formulated with existing food ingredients and technologies. In particular, oil-in-water nanoemulsions, which consist of small oil droplets ( less then 200 nm) dispersed in water, are being utilized as delivery systems for various hydrophobic substances in foods, including nutrients, nutraceuticals, antioxidants, antimicrobials, colors, and flavors. In this article, we focus on the application of nanoemulsion-based delivery systems for improving the quality, safety, nutritional profile, and sensory attributes of muscle foods, such as meat and fish. The article also critically reviews the formulation and fabrication of food-grade nanoemulsions, their potential benefits and limitations in muscle food systems.Spectroscopic techniques, electrochemical methods, nanozymes, computer vision, and modified chromatographic techniques are the emerging techniques for determining the quality and safety parameters (e.g., physical, chemical, microbiological, and classified parameters, as well as inorganic and organic contaminants) of tea products (such as fresh tea leaves, commercial tea, tea beverage, tea powder, and tea bakery products) effectively. By simplifying the sample preparation, speeding up the detection process, reducing the interference of other substances contained in the sample, and improving the sensitivity and accuracy of the current standard techniques, the abovementioned emerging techniques achieve rapid, cost-effective, and nondestructive or slightly destructive determination of tea products, with some of them providing real-time detection results. Applying these emerging techniques in the whole industry of tea product processing, right from the picking of fresh tea leaves, fermentation of tea leaves, to the sensory evaluation of commercial tea, as well as developing portable devices for real-time and on-site determination of classified and safety parameters (e.g., the geographical origin, grade, and content of contaminants) will not only eliminate the strong dependence on professionals but also help mechanize the production of tea products, which deserves further research. Conducting a review on the application of spectroscopic techniques, electrochemical methods, nanozymes, computer vision, and modifications of chromatographic techniques for quality and safety determination of tea products may serve as guide for other types of foods and beverages, offering potential techniques for their detection and evaluation, which would promote the development of the food industry.Fish is a high nutritional value matrix of which production and consumption have been increasing in the last years. Advancements in the efficient evaluation of freshness are essential to optimize the quality assessment, to improve consumer safety, and to reduce raw material losses. Therefore, it is necessary to use rapid, nondestructive, and objective methodologies to evaluate the quality of this matrix. Quality Index Method (QIM) is a tool applied to indicate fish freshness through a sensory evaluation performed by a group of assessors. However, the use of QIM as an official method for quality assessment is limited by the protocol, sampling size, specificities of the species, storage conditions, and assessor’s experience, which make this method subjective. Also, QIM may present divergences regarding the development of microorganisms and chemical analysis. In this way, novel quality evaluation methods such as electronic noses, electronic tongues, machine vision system, and colorimetric sensors have been proposed, and novel technologies such as proteomics and mitochondrial analysis have been developed. In this review, the weaknesses of QIM were exposed, and novel methodologies for quality evaluation were presented. The consolidation of these novel methodologies and their use as methods of quality assessment are an alternative to sensory methods, and their understanding enables a more effective fish quality control.Wine making industry generates high quantities of valuable byproducts that can be used to enhance foods in order to diminish the environmental impact and to obtain more economic benefits. Grape byproducts are rich in phenolic compounds and dietary fiber, which make them suitable to improve the nutritional value of bakery, pastry, and pasta products. The viscoelastic behavior of dough and the textural and the sensory characteristics of baked goods and pasta containing grape byproducts depend on the addition level and particle size. Thus, an optimal dose of a finer grape byproducts flour must be found in order to minimize the negative effects such as low loaf volume and undesirable sensory and textural characteristics they may have on the final product quality. In the same time, an enrichment of the nutritional and functional value of the product by increasing the fiber and antioxidant compounds contents is desired. The aim of this review was to summarize the effects of the chemical components of grape byproducts on the nutritional, functional, rheological, textural, physical, and sensory characteristics of the baked goods and pasta. Further researches about the impact of foods enriched with grape byproducts on the human health, about molecular interactions between components, and about the effects of grape pomace compounds on the shelf life of baked goods and pasta are recommended.With the surge in consumption of insects, the search continues to find ways to increase the popularity of insect-based products in the Western world. The black soldier fly larvae (BSFL), which is mainly utilized for animal feed, has great potential to provide a sustainable source of nutrients for human food. This review aims to discuss some of the key benefits and challenges of BSFL and their potential role as a food ingredient and/or product for human consumption. Few articles specifically discuss BSFL as a food source, therefore a comprehensive literature search strategy consisted of collecting and evaluating published data about BSFL as animal feed that could be relevant to its use in food. The hurdles that need to be overcome in order to introduce BSFL as a viable food option include safety concerns, technofunctional properties, nutritional aspects, consumer attitudes, and product applications for BSFL.Dietary advanced glycation end products (dAGEs) are complex and heterogeneous compounds derived from nonenzymatic glycation reactions during industrial processing and home cooking. There is mounting evidence showing that dAGEs are closely associated with various chronic diseases, where the absorbed dAGEs fuel the biological AGEs pool to exhibit noxious effects on human health. Currently, due to the uncertain bioavailability and rapid renal clearance of dAGEs, the relationship between dAGEs and biological AGEs remains debatable. In this review, we provide the most updated information on dAGEs including their generation in processed foods, analytical and characterization techniques, metabolic fates, interaction with AGE receptors, implications on human health and reducing strategies. Available evidence demonstrating a relevance between dAGEs and food allergy is also included. AGEs are ubiquitous in foods and their contents largely depend on the reactivity of carbonyl and amino groups, along with surrounding condition mainly pH and heating procedures. Once being digested and absorbed into the circulation, two separate pathways can be involved in the deleterious effects of dAGEs an AGE receptor-dependent way to stimulate cell signals, and an AGE receptor-independent way to dysregulate proteins via forming complexes. Inhibition of AGEs formation during food processing and reduction in the diet are two potent approaches to restrict health-hazardous dAGEs. selleck compound To elucidate the biological role of dAGEs toward human health, the following significant perspectives are raised molecular size and complexity of dAGEs; interactions between unabsorbed dAGEs and gut microbiota; and roles played by concomitant compounds in the heat-processed foods.We review recent applications of atomic force microscopy (AFM) to characterize microstructural and textural properties of food materials. Based on interaction between probe and sample, AFM can image in three dimensions with nanoscale resolution especially in the vertical orientation. When the scanning probe is used as an indenter, mechanical features such as stiffness and elasticity can be analyzed. The linkage between structure and texture can thus be elucidated, providing the basis for many further future applications of AFM. Microstructure of simple systems such as polysaccharides, proteins, or lipids separately, as characterized by AFM, is discussed. Interaction of component mixtures gives rise to novel properties in complex food systems due to development of structure. AFM has been used to explore the morphological characteristics of such complexes and to investigate the effect of such characteristics on properties. Based on insights from such investigations, development of food products and manufacturing can be facilitated. Mechanical analysis is often carried out to evaluate the suitability of natural or artificial materials in food formulations. The textural properties of cellular tissues, food colloids, and biodegradable films can all be explored at nanometer scale, leading to the potential to connect texture to this fine structural level. More profound understanding of natural food materials will enable new classes of fabricated food products to be developed.