• Ismail Bentzen posted an update 4 months, 3 weeks ago

    The structural state and crystal structure of Lu(1-x)ScxFeO3 (0 ≤ x ≤ 1) compounds prepared by a chemical route based on a modified sol-gel method were investigated using X-ray diffraction, Raman spectroscopy, as well as scanning electron microscopy. It was observed that chemical doping with Sc ions led to a structural phase transition from the orthorhombic structure to the hexagonal structure via a wide two-phase concentration region of 0.1 less then x less then 0.45. An increase in scandium content above 80 mole% led to the stabilization of the non-perovskite bixbyite phase specific for the compound ScFeO3. The concentration stability of the different structural phases, as well as grain morphology, were studied depending on the chemical composition and synthesis conditions. Based on the data obtained for the analyzed samples, a composition-dependent phase diagram was constructed.We studied the effects of adding Y on the microstructure, mechanical properties and wear properties of ZCuSn10Pb10, and clarified the underlying mechanism by microstructure characterization through SEM, EDS and XRD. No new phase was detected after the addition of Y up to 0.2 wt.%, but an enrichment of Y in the Pb phase was found. The Pb particles were refined significantly after the addition of Y, which resulted from the compositional undercooling for the Cu dendrite where the Pb particles solidified, and the highest refinement efficiency was reached when the content of Y was 0.15 wt.%. The hardness of the alloy was improved due to the refinement of the microstructure. The fine Pb particles between the dendrite branches acted as solid lubricant, which was smeared on the entire surface during a friction and wear experiment, thus increasing wear resistance and reducing the coefficient of friction.Most of the food packaging materials used in the market are petroleum-based plastics; such materials are neither biodegradable nor environmentally friendly and require years to decompose. To overcome these problems, biodegradable and edible materials are encouraged to be used because such materials degrade quickly due to the actions of bacteria, fungi, and other environmental effects. In this work, commonly available household materials such as gelatin, soy protein, corn starch, and papaya were used to prepare cost-effective lab-scale biodegradable and edible packaging film as an effective alternative to commercial plastics to reduce waste generation. Prepared films were characterized in terms of Fourier transform infrared spectroscopy (FTIR), water vapor transmission rate (WVTR), optical transparency, and tensile strength. FTIR confirmed the addition of papaya and soy protein to the gelatin backbone. WVTR of the gelatin-papaya films was recorded to be less than 50 g/m2/day. This water vapor barrier was five times better than films of pristine gelatin. The gelatin, papaya, and soy protein films exhibited transparencies of around 70% in the visible region. The tensile strength of the film was 2.44 MPa, which improved by a factor of 1.5 for the films containing papaya and soy protein. The barrier qualities of the gelatin and gelatin-papaya films maintained the properties even after going through 2000 bending cycles. From the results, it is inferred that the prepared films are ideally suitable for food encapsulation and their production on a larger scale can considerably cut down the plastic wastage.In the present study, the amount of fragments generated and their travel distances due to vehicle collision with concrete median barrier (CMB) was analyzed and predicted. In this regard, machine learning was applied to the results of numerical analysis, which were developed by comparing with field test. The numerical model was developed using smoothed particle hydrodynamics (SPH). SPH is a mesh-free method that can be used to predict the amount of fragments and their travel distances from concrete structures under impact loading. In addition, deep neural network (DNN) and gradient boosting machine (GBM) were also employed as machine learning methods. In this study, the results of DNN, GBM, and numerical analysis were then compared with the conducted field test. Such comparisons revealed that numerical analysis generated lower error than both DNN and GBM. When prediction results of both the amount of fragments and their travel distances were considered, the result of DNN showed smaller errors than that of GBM. Therefore, in studies where machine learning is used to predict the amount of fragments and their travel distances, careful selection of an appropriate method from the various available machine learning methods such as DNN, GBM, and random forest is absolutely important.It is well known that welding dissimilar metals can play the advantages and characteristics of those different metals, but it is easy to encounter some problems. In this paper, the thermomechanical behavior of the weldolet-branch dissimilar steel joints in different welding cases is analyzed by establishing a three-dimensional finite element model, and the predicted thermal cycling and residual stresses are verified using experimental tools. The results show that the high temperature area and the heat affected zone on the side of the branch pipe are larger, and there is a large stress gradient at the fusion line on both sides of the weld. Too high or too low temperature between welding layers will cause large residual stress, thus, 200 °C is more suitable for the welding of weldolet-branch joints. The residual stresses of path-1, path-2 and path-3 have similar distributions at 0° and 180° sections, and the circumferential and axial residual stresses on the inner surface are larger than those on the outer surface. The residual stress on the inner and outer surfaces of path-3 is smaller than that of path-1 and path-2 at the 90° and 270° sections as a whole, and the residual stress at the 90° section reaches the minimum.Since energy efficiency in comminution of ores is as small as 1% using a mechanical crushing process, it is highly demanded to improve its efficiency. Using electrical impulses to selectively liberate valuable minerals from ores can be a solution of this problem. In this work, we developed a simulation method using equivalent circuits of granite to better understand the crushing process with high-voltage (HV) electrical pulses. From our simulation works, we calculated the electric field distributions in granite when an electrical pulse was applied. We also calculated other associated electrical phenomena such as produced heat and temperature changes from the simulation results. A decrease in the electric field was observed in the plagioclase with high electrical conductivity and void space. Pidnarulex mw This suggests that the void volume in each mineral is important in calculating the electrical properties. Our equivalent circuit models considering both the electrical conductivity and dielectric constant of a granite can more accurately represent the electrical properties of granite under HV electric pulse application. These results will help us better understand the liberation of minerals from granite by electric pulse application.The aim of this study was to obtain a superhydrophobic coating by modifying anodized aluminum using polydimethylsiloxane (PDMS). In order to obtain a superhydrophobic coating on an aluminum substrate, a multistage treatment was implemented. Specimens of aluminum were treated by abrasive blasting, anodization in sulfuric acid, impregnation by PDMS, rinsing in toluene to remove excess of PDMS, and curing. A rough surface with an additional low free energy layer on it resulted in a superhydrophobic effect. The coating obtained has an average contact angle of 159°. The specimens were tested in terms of durability in natural conditions. Additionally, anti-icing and anti-fouling properties were evaluated. The coating was compared with anodized aluminum obtained by a basic process.Fiber glass waste (FGW) was subjected to alkali activation in an aqueous solution with different concentrations of sodium/potassium hydroxide. The activated materials were fed into a methane-oxygen flame with a temperature of around 1600 °C. X-ray diffraction analysis confirmed the formation of several hydrated compounds, which decomposed upon flame synthesis, leading to porous glass microspheres (PGMs). Pore formation was favored by using highly concentrated activating alkali solutions. The highest homogeneity and yield of PGMs corresponded to the activation with 9 M KOH aqueous solution.Improved wound healing of burnt skin and skin lesions, as well as medical implants and replacement products, requires the support of synthetical matrices. Yet, producing synthetic biocompatible matrices that exhibit specialized flexibility, stability, and biodegradability is challenging. Synthetic chitin/chitosan matrices may provide the desired advantages for producing specialized grafts but must be modified to improve their properties. Synthetic chitin/chitosan hydrogel and aerogel techniques provide the advantages for improvement with a bioinspired view adapted from the natural molecular toolbox. To this end, animal genetics provide deep knowledge into which molecular key factors decisively influence the properties of natural chitin matrices. The genetically identified proteins and enzymes control chitin matrix assembly, architecture, and degradation. Combining synthetic chitin matrices with critical biological factors may point to the future direction with engineering materials of specific properties for biomedical applications such as burned skin or skin blistering and extensive lesions due to genetic diseases.In this study, the influence of Er addition on the microstructure, type transformation of second phases, and corrosion resistance of an Al-Zn-Mg-Cu alloy were explored. The results revealed that the added Er element could significantly refine the alloy grains and change the second-phase composition at the grain boundary of the alloy. In the as-cast state, the Er element significantly enhanced the corrosion resistance of the alloy due to its refining effect on the grains and second phases at the grain boundary. The addition of the alloying element Er to the investigated alloy changed the type of corrosion attack on the alloy’s surface. In the presence of Er, the dominant type of corrosion attack is pitting corrosion, while the alloy without Er is prone to intergranular corrosion attack. After a solution treatment, the Al8Cu4Er phase was formed, in which the interaction with the Cu element and the competitive growth relation to the Al3Er phase were the key factors influencing the corrosion resistance of the alloy. The anodic corrosion mechanism of the Al8Cu4Er and Al3Er phases evidently lowered the alloy corrosion rate, and the depth of the corrosion pit declined from 197 μm to 155 μm; however, further improvement of corrosion resistance was restricted by the morphology and size of the Al8Cu4Er phase after its formation and growth; therefore, adjusting the matching design of the Cu and Er elements can allow Er to improve the corrosion resistance of the Al-Zn-Mg-Cu aluminum alloy to the greatest extent.The thermal pyrolysis of agriculture biomass has been studied in a fixed-bed reactor, where the pyrolysis was conducted at a steady temperature of 800 °C. This work analyses the pyrolysis products of six agricultural wastes pistachio husks, walnut husks, sunflower hulls, buckwheat husks, corncobs and coconut shells. The conducted research compared examples of large waste biomass streams from different parts of the world as a potential source of renewable energy. Additionally, the kinetics of the reaction with the activation energy were analyzed and calculated for all raw materials in pyrolysis process. Biochars are characterised by higher combustion heat in comparison to the raw material samples. The average value of the heat of combustion increased due to pyrolysis process from 10 MJ/kg, with minimal value of 2.7 MJ/kg (corncob) and maximum of 13.0 MJ/kg for coconut, which is also characterised by the maximal absolute combustion heating value (32.3 MJ/kg). The increase in calorific values varied from 15% to 172% (with 54% reference for wood chips), which indicates that charring is an effective method for increasing the energy concentration.