-
Camp Cassidy posted an update 4 months, 3 weeks ago
Haplotype tagging unveils concurrent development associated with crossbreed races in 2 butterfly species.
Flowering is the most favorable host stage for Fusarium infection in wheat, which is called the susceptibility window (SW). It is not known how long it takes, how it changes in different resistance classes, nor how stable is the plant reaction in the SW. We have no information, how the traits disease index (DI), Fusarium-damaged kernel rate (FDK), and deoxynivalenol (DON) respond within the 16 days period. Seven winter wheat genotypes differing in resistance were tested (2013-2014). Four Fusarium isolates were used for inoculation at mid-anthesis, and 4, 8, 11, 13, and 16 days thereafter. The DI was not suitable to determine the length of the SW. In the Fusarium-damaged kernels (FDK), a sharp 50% decrease was found after the 8th day. The largest reduction (above 60%) was recorded for DON at each resistance level between the 8th and 11th day. This trait showed the SW most precisely. The SW is reasonably stable in the first 8-9 days. This fits for all resistance classes. The use of four isolates significantly improved the reliability and credit of the testing. The stable eight-day long SW helps to reduce the number of inoculations. The most important trait to determine the SW is the DON reaction and not the visual symptoms.To investigate pufferfish accumulation, elimination, and distribution of tetrodotoxin (TTX), Takifugu obscurus was fed with wild TTX-containing gastropod Nassarius semiplicata to simulate the natural food chain. Three-month-old non-poisonous T. obscurus was fed with wild toxic N. semiplicata at three exposure dose for 28 days, and later, with toxin-free food until day 67. Three fish individuals from each treatment were sampled, and the distribution of TTX in different tissues was measured. The results showed that the accumulation ratio of TTX in the three exposure dose groups ranged from 35.76% to 40.20%. The accumulation ratio in the skin and liver was the highest amongst all tissues, accounting for more than 85% of the total TTX, whereas that in the kidney and gallbladder was the lowest (0.11%-0.78%). Studies on the kinetic of TTX accumulation and elimination revealed that the skin was the tissue with the highest accumulation speed constant (8.06), while the liver, kidney, and intestinal tract showed the highest speed of TTX elimination. The time required for TTX reduction to reach the safety limit could be predicted by using standard elimination equations. Qualitative analysis by UPLC-MS/MS revealed the occurrence of seven TTX derivatives in T. obscurus; of these TTX, 5-deoxy TTX, 11-deoxy TTX, 4,9-anhydro TTX were found in all tested tissues.Current treatment of chronic diseases includes, among others, application of cytokines, monoclonal antibodies, cellular therapies, and immunostimulants. As all the underlying mechanisms of a particular diseases are not always fully clarified, treatment can be inefficient and associated with various, sometimes serious, side effects. Small secondary metabolites produced by various microbes represent an attractive alternative as future anti-inflammatory drug leads. Compared to current drugs, they are cheaper, can often be administered orally, but still can keep a high target-specificity. Some compounds produced by actinomycetes or fungi have already been used as immunomodulators-tacrolimus, sirolimus, and cyclosporine. This work documents strong anti-inflammatory features of another secondary metabolite of streptomycetes-manumycin-type polyketides. We compared the effect of four related compounds manumycin A, manumycin B, asukamycin, and colabomycin E on activation and survival of human monocyte/macrophage cell line THP-1. The anti-cancer effect of manucycine A has been demonstrated; the immunomodulatory capacities of manumycin A are obvious when using micromolar concentrations. The application of all four compounds in 0.25-5 μM concentrations leads to efficient, concentration-dependent inhibition of IL-1β and TNF expression in THP-1 upon LPS stimulation, while the three latter compounds show a significantly lower pro-apoptotic effect than manumycin A. We have demonstrated the anti-inflammatory capacity of selected manumycin-type polyketides.HIV and antiretroviral therapy affect lipid metabolism. AZD9291 Lipidomics quantifies several individual species that are overlooked using conventional biochemical analyses, outperforming traditional risk equations. We aimed to compare the plasma lipidomic profile of HIV patients taking efavirenz (EFV) or rilpivirine (RPV). Patients ≥ 18 years old on EFV co-formulated with emtricitabine and tenofovir disoproxil fumarate (FTC/TDF) with HIV-RNA less then 50 copies/mL for ≥6 months were randomized to continue EFV/FTC/TDF (n = 14) or switch to RPV/FTC/TDF (n =15). AZD9291 Lipidomic analyses conducted by mass spectrometry (MS) were performed at baseline and after 12 and 24 weeks. OWLiver® Care and OWLiver® tests were performed to estimate the presence of fatty liver disease (NAFLD). No significant differences (83% male, median age 44 years, 6 years receiving EFV/FTC/TDF, CD4+ count 740 cells/mm3, TC 207 [57 HDL-C/133 LDL-C] mg/dL, TG 117 mg/dL) were observed between the groups at baseline. Significant reductions in plasma lipids and lipoproteins but increased circulating bilirubin concentrations were observed in patients who switched to RPV/FTC/TDF. Patients on RPV/FTC/TDF showed a decrease in the global amount of storage lipids (-0.137 log2 [fold-change] EFV vs. 0.059 log2 [fold-change] RPV) but an increase in lysophosphatidylcholines (LPCs) and total steroids. Compared with EFV, RPV increased metabolites with anti-inflammatory properties and reduced the repository of specific lipotoxic lipids.The spread of multidrug-resistant Gram-negative bacteria is an increasing threat to human health, because novel compound classes for the development of antibiotics have not been discovered for decades. Antimicrobial peptides (AMPs) may provide a much-needed breakthrough because these immunity-related defense molecules protect many eukaryotes against Gram-negative pathogens. Recent concepts in evolutionary immunology predict the presence of potent AMPs in insects that have adapted to survive in habitats with extreme microbial contamination. For example, the saprophagous and coprophagous maggots of the drone fly Eristalis tenax (Diptera) can flourish in polluted aquatic habitats, such as sewage tanks and farmyard liquid manure storage pits. We used next-generation sequencing to screen the E. tenax immunity-related transcriptome for AMPs that are synthesized in response to the injection of bacterial lipopolysaccharide. We identified 22 AMPs and selected nine for larger-scale synthesis to test their activity against a broad spectrum of pathogens, including multidrug-resistant Gram-negative bacteria.