-
Reilly Buus posted an update 4 months, 3 weeks ago
The molecular composition of presynaptic and postsynaptic neuronal terminals is dynamic, and yet long-term stabilizations in postsynaptic responses are necessary for synaptic development and long-term plasticity. The need to reconcile these concepts is further complicated by learning- and memory-related plastic changes in the molecular make-up of synapses. Advances in single-particle tracking mean that we can now quantify the number and diffusive properties of specific synaptic molecules, while statistical thermodynamics provides a framework to analyse these molecular fluctuations. In this Review, we discuss the use of these approaches to gain quantitative descriptions of the processes underlying the turnover, long-term stability and plasticity of postsynaptic receptors and show how these can help us to understand the balance between local molecular turnover and synaptic structural identity and integrity.The Euro-Siberian steppe flora consists of warm- and cold-adapted species, which may have responded differently to Pleistocene glacials and interglacials. Genotyping-by-sequencing individuals from across the distribution range of the pheasant’s eye (Adonis vernalis), we aimed to gain insight into steppe florogenesis based on the species’ evolutionary history. Although the primary area of origin of the species group comprising A. vernalis, A. villosa and A. volgensis is in Asia, our results indicate that recent populations of A. vernalis are not of Asian origin but evolved in the southern part of Europe during the Pleistocene, with Spanish populations clearly genetically distinct from the Southeastern European populations. We inferred that A. vernalis migrated eastwards from the sub-Mediterranean forest-steppes of Southeastern Europe into the continental forest-steppe zone. Eastern European populations had the highest private allelic richness, indicating long-term large population sizes in this region. As a thermophilic species, A. vernalis seems unlikely to have survived in the cold deserts of the Last Glacial Maximum in Western Siberia, so this region was likely (re)colonized postglacially. Overall, our results reinforce the importance of identifying the area of origin and the corresponding ecological requirements of steppe plants in order to understand the composition of today’s steppe flora.
Epidermal growth factor receptor (EGFR) is a therapeutic target to which HER2/HER3 activation may contribute resistance. This Phase I/II study examined the toxicity and efficacy of high-dose pulsed AZD8931, an EGFR/HER2/HER3 inhibitor, combined with chemotherapy, in metastatic colorectal cancer (CRC).
Treatment-naive patients received 4-day pulses of AZD8931 with irinotecan/5-FU (FOLFIRI) in a Phase I/II single-arm trial. Primary endpoint for Phase I was dose limiting toxicity (DLT); for Phase II best overall response. Samples were analysed for pharmacokinetics, EGFR dimers in circulating exosomes and Comet assay quantitating DNA damage.
Eighteen patients received FOLFIRI and AZD8931. At 160 mg bd, 1 patient experienced G3 DLT; 160 mg bd was used for cohort expansion. No grade 5 adverse events (AE) reported. Seven (39%) and 1 (6%) patients experienced grade 3 and grade 4 AEs, respectively. Of 12 patients receiving 160 mg bd, best overall response rate was 25%, median PFS and OS were 8.7 and 21.2 months, respectively. A reduction in circulating HER2/3 dimer in the two responding patients after 12 weeks treatment was observed.
The combination of pulsed high-dose AZD8931 with FOLFIRI has acceptable toxicity. Further studies of TKI sequencing may establish a role for pulsed use of such agents rather than continuous exposure.
ClinicalTrials.gov number NCT01862003.
ClinicalTrials.gov number NCT01862003.Soil viruses are highly abundant and have important roles in the regulation of host dynamics and soil ecology. Climate change is resulting in unprecedented changes to soil ecosystems and the life forms that reside there, including viruses. In this Review, we explore our current understanding of soil viral diversity and ecology, and we discuss how climate change (such as extended and extreme drought events or more flooding and altered precipitation patterns) is influencing soil viruses. Finally, we provide our perspective on future research needs to better understand how climate change will impact soil viral ecology.Alzheimer’s disease (AD) is a progressive neurodegenerative disease that is most prevalent in females. While estrogen provides neuroprotection in females, sex mediated differences in the development of AD pathology are not fully elucidated. Therefore, comparing events between sexes in early-stage AD pathology may reveal more effective therapeutic targets of intervention. To address sex differences, we analyzed early-stage 9-month male and female TgF344-AD (Tg-AD) rats, an AD model carrying the APPswe and Presenilin 1 (PS1ΔE9) mutations that develops progressive age-dependent AD pathology similar to humans. Tg-AD females significantly outperformed Tg-AD males in the active place avoidance (aPAT) test that assesses hippocampal-dependent spatial learning and memory. 6-Benzylaminopurine However, comparisons between Tg-AD male or female rats and their WT counterparts showed significant deficits for female but not male rats. Nevertheless, Tg-AD females experienced significantly less hippocampal neuronal loss with higher GluA2 subunit levels than Tg-AD males. Unexpectedly, Tg-AD females displayed higher levels of hippocampal amyloid plaques than Tg-AD males. Thus, we propose that GluA2 may provide a neuroprotective function for Tg-AD females in our rat model by mitigating cognitive impairment independently of amyloid plaques. Elucidating this protective mechanism in AD could lead to new targets for early intervention.Codonopsis Radix (CR) is an edible food and traditional Chinese herb medicine in China. Various varieties of Codonopsis Radix have different tastes. To make the flavor of processed food stable, two kinds of electronic sensory devices, electronic nose and electronic tongue, were used to establish a discrimination model to identify the botanical origin of each sample. The optimal model built on the 88 batches of samples was selected from the models trained with all combination of two pretreatment methods and three classification methods. A comparison were performed on the models trained on the data collected by electronic nose and electronic tongue. The results showed that the model trained on the fused dataset outperformed the models trained separately on the electronic nose data and electronic tongue data. The two preprocessing approaches could improve the prediction performance of all classification methods. Classification and Regression Tree approach performed better than Partial Least Square Discriminant Analysis and Linear Discriminant Analysis in terms of accuracy. But Classification and Regression Tree tends to assign the samples of minority class to the majority class. Meanwhile, Partial Least Square Discriminant Analysis keeps a good balance between the identification requirements of all the two groups of samples. Taking all the results above, the model built using the Partial Least Square Discriminant Analysis method on the fused data after z-score was used to identify the botanical origin of Codonopsis Radix.This study was planned with the aim of identifying the nature and circumstances of the high-graded central core and increasing trend of copper content through depth of 1000 m in Miduk PCD. Mechanisms of high-grading, refer to hypogene enrichment (HE), in PCDs poorly understood. Two main hypotheses for hypogene enrichment formation assumed addition of extra copper to the system, alternatively hypogene leaching and enrichment. In order to obtain alteration-mineralization-geochemical pattern both horizontally and vertically, all macroscopic data extracted from relogging of 6800 m’ drill core along an east-west profile, compiled with microscopic observations from studying of 550 thin-polished sections and copper grades of 3400 samples analyzed by XRF and ICP-OES. Our findings proved hypogene enrichment events at deposit. HE evidences in macroscopic and microscopic scales identified almost as various replacement textures between Fe-Cu sulphides and also vein-reopening by later Cu-mineralization and new generation he rock is preserved copper fixation and where it totally eliminated almost complete leaching of copper happened. Consequently, we introduce leaching-fixation as index processes in hypogene enrichment at the case study. We suggest that identifying the nature of hypogene enrichment processes and its characterizations not only improve understanding about PCD’s hydrothermal evolution, but also achieve exploration indicators, furthermore, industrial benefits in the production line.Extensive mutations in the Omicron spike protein appear to accelerate the transmission of SARS-CoV-2, and rapid infections increase the odds that additional mutants will emerge. To build an investigative framework, we have applied an unsupervised machine learning approach to 4296 Omicron viral genomes collected and deposited to GISAID as of December 14, 2021, and have identified a core haplotype of 28 polymutants (A67V, T95I, G339D, R346K, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, K796Y, N856K, Q954H, N69K, L981F) in the spike protein and a separate core haplotype of 17 polymutants in non-spike genes (K38, A1892) in nsp3, T492 in nsp4, (P132, V247, T280, S284) in 3C-like proteinase, I189 in nsp6, P323 in RNA-dependent RNA polymerase, I42 in Exonuclease, T9 in envelope protein, (D3, Q19, A63) in membrane glycoprotein, and (P13, R203, G204) in nucleocapsid phosphoprotein. Using these core haplotypes as reference, we have identified four newly emerging polymutants (R346, A701, I1081, N1192) in the spike protein (p value = 9.37*10-4, 1.0*10-15, 4.76*10-7 and 1.56*10-4, respectively), and five additional polymutants in non-spike genes (D343G in nucleocapsid phosphoprotein, V1069I in nsp3, V94A in nsp4, F694Y in the RNA-dependent RNA polymerase and L106L/F of ORF3a) that exhibit significant increasing trajectories (all p values less then 1.0*10-15). In the absence of relevant clinical data for these newly emerging mutations, it is important to monitor them closely. Two emerging mutations may be of particular concern the N1192S mutation in spike protein locates in an extremely highly conserved region of all human coronaviruses that is integral to the viral fusion process, and the F694Y mutation in the RNA polymerase may induce conformational changes that could impact remdesivir binding.Regulatory T cells (Tregs) are essential to maintain self-tolerance and immune homeostasis but, as components of the tumor microenvironment (TME), are also a major barrier to effective cancer immunosurveillance and immunotherapy. FH535 and its derivative Y3 are two N-aryl-benzene-sulfonamides (NABs) that inhibit HCC cell proliferation and tumor progression. However, the impact of NABs on the immune cells in the TME is not yet known. Analyses of explanted livers from patients with hepatocellular carcinoma (HCC) showed that high levels of tumor-infiltrating Tregs were associated with poor tumor differentiation. These results lead us to investigate the immunomodulatory effects of NABs in regulatory and effector T cells. Exposure of primary human Tregs to NABs induced a rapid but temporary increase of cell expansion, a gradual disruption of suppressor activity, and concomitant bioenergetics and autophagic flux dysregulations. In contrast to Tregs, no gross effects were observed in effector T cells. Addition of Rapamycin prevented the functional decay of Tregs and restored their metabolic profile, suggesting that NAB effects require the integrity of the mTOR pathway.