• Hastings Conradsen posted an update 2 months, 2 weeks ago

    exercise.Gene body methylation (gbM) is an epigenetic mark where gene exons are methylated in the CG context only, as opposed to CHG and CHH contexts (where H stands for A, C, or T). CG methylation is transmitted transgenerationally in plants, opening the possibility that gbM may be shaped by adaptation. This presupposes, however, that gbM has a function that affects phenotype, which has been a topic of debate in the literature. Here, we review our current knowledge of gbM in plants. We start by presenting the well-elucidated mechanisms of plant gbM establishment and maintenance. We then review more controversial topics the evolution of gbM and the potential selective pressures that act on it. Finally, we discuss the potential functions of gbM that may affect organismal phenotypes gene expression stabilization and upregulation, inhibition of aberrant transcription (reverse and internal), prevention of aberrant intron retention, and protection against TE insertions. To bolster the review of these topics, we include novel analyses to assess the effect of gbM on transcripts. Overall, a growing body of literature finds that gbM correlates with levels and patterns of gene expression. It is not clear, however, if this is a causal relationship. Altogether, functional work suggests that the effects of gbM, if any, must be relatively small, but there is nonetheless evidence that it is shaped by natural selection. We conclude by discussing the potential adaptive character of gbM and its implications for an updated view of the mechanisms of adaptation in plants.

    The PathogenDx EnviroX-F uses microarray technology to simultaneously detect Listeria species, Listeria monocytogenes, and Salmonella species from environmental samples without the need for enrichment.

    The validation study included a matrix study of four matrices (stainless steel, plastic, rubber, and sealed concrete) comparing the PathogenDx EnviroX-F assay to the US Food and Drug Administration (FDA) Bacteriological Analytical Manual (BAM) Chapter 10, “Detection of L. monocytogenes in Foods and Environmental Samples, and Enumeration of L. monocytogenes in Foods” (revised March 2017), and FDA BAM Chapter 5,”Salmonella” (revised February 2020). Other required Performance Tested MethodSM parameters evaluated included inclusivity and exclusivity, robustness, instrument variation, and product consistency and stability.

    The PathogenDx EnviroX-F assay was evaluated with 30 unpaired replicate surface areas for each environmental surface. The candidate method was evaluated without an enrichment step.

    In the inclusivity and exclusivity study 50 out of 50 Listeria isolates were detected, 50 out of 50 L. monocytogenes strains were detected, 108 out of 108 Salmonella strains were detected, and 95 out of 95 exclusivity strains were correctly excluded. In the matrix study, the PathogenDx EnviroX-F assay showed no significant differences between confirmed results or between candidate and reference method results for 4″ × 4″ environmental surface areas for each matrix.

    The PathogenDx EnviroX-F assay is an effective method for the qualitative detection of Listeria spp., L. monocytogenes, and Salmonella spp. from environmental surface swabs.

    The PathogenDx EnviroX-F assay will be the first PTM-approved multiplex assay for Listeria spp., L. monocytogenes, and Salmonella without the need for an environment step.

    The PathogenDx EnviroX-F assay will be the first PTM-approved multiplex assay for Listeria spp., L. monocytogenes, and Salmonella without the need for an environment step.Microtubule severing plays important role in cell structure and cell division. The microtubule severing protein katanin, composed of the MEI-1/MEI-2 subunits in Caenorhabditis elegans, is required for oocyte meiotic spindle formation; however, it must be inactivated for mitosis to proceed as continued katanin expression is lethal. Katanin activity is regulated by 2 ubiquitin-based protein degradation pathways. Another ubiquitin ligase, HECD-1, the homolog of human HECTD1/HECT domain E3 ubiquitin protein ligase 1, regulates katanin activity without affecting katanin levels. In other organisms, HECD-1 is a component of the striatin-interacting kinase phosphatase complex, which affects cell proliferation and a variety of signaling pathways. Here we conducted a systematic screen of how mutations in striatin-interacting kinase phosphatase components affect katanin function in C. elegans. Striatin-interacting kinase phosphatase core components (FARL-11, CASH-1, LET-92, and GCK-1) were katanin inhibitors in mitosis and activators in meiosis, much like HECD-1. By contrast, variable components (SLMP-1, OTUB-2) functioned as activators of katanin activity in mitosis, indicating they may function to alter striatin-interacting kinase phosphatase core function. The core component CCM-3 acted as an inhibitor at both divisions, while other components (MOB-4, C49H3.6) showed weak interactions with katanin mutants. Additional experiments indicate that katanin may be involved with the centralspindlin complex and a tubulin chaperone. HECD-1 shows ubiquitous expression in the cytoplasm throughout meiosis and early development. The differing functions of the different subunits could contribute to the diverse functions of the striatin-interacting kinase phosphatase complex in C. elegans and other organisms.

    Adenomyosis (AM) is a common gynecological disorder that can cause pelvic pain. The regulatory role of long noncoding RNAs (lncRNAs) in AM progression has been widely reported. This study investigated the effect and mechanism of lncRNA taurine-upregulated gene 1 (TUG1) on endometrial epithelial cells (EECs) in AM.

    Endometrial tissues of AM patients and controls were collected. A murine model of AM was established by tamoxifen induction. TUG1 expression in endometrial tissues of AM patients and mice was determined. In vivo, the effect of TUG1 on AM mice was measured through H&E staining, Masson’s staining, uterine weight, and estradiol concentration. EECs isolated from AM patients were transfected with sh-TUG1. In vitro, the effect of TUG1 on the proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and angiogenesis of EECs was evaluated by CCK8, colony formation, immunofluorescence, wound healing, and Transwell assays. The binding relationship among TUG1, E2F4, and KLF5 was confirmed using RNA immunoprecipitation and RNA pull-down assays. A function rescue experiment was designed to verify the effect of KLF5 on EECs.

    TUG1 expression was elevated in AM mice and patients. Downregulation of TUG1 promoted the recovery of AM mice. Downregulation of TUG1 suppressed proliferation, migration, invasion, EMT, and angiogenesis of EECs. Mechanically, TUG1 suppressed KLF5 transcription by binding to E2F4. Downregulation of KLF5 reversed the inhibitory effect of TUG1 silencing on the functions of EECs.

    TUG1 expression was elevated in AM, and TUG1 facilitated proliferation, migration, invasion, EMT, and angiogenesis of EECs via E2F4/KLF5, thereby aggravating AM.

    TUG1 expression was elevated in AM, and TUG1 facilitated proliferation, migration, invasion, EMT, and angiogenesis of EECs via E2F4/KLF5, thereby aggravating AM.Seasonal dynamics of diversity patterns are a key component to understand when assessing ecological communities across temporal scales given that long-term trends in diversity are often a product of the intricate dynamisms that occur at shorter temporal scales. However, seasonal trends in diversity are usually dependent on local-scale conditions, such as habitat types or the demographic characteristics of a given fauna, thus requiring better data coverage from consistent local-scale sampling. Furthermore, the assessment of seasonal dynamics in the context of functional diversity derived from trait-based data is often lacking in many important taxa such as insects. In this study, I quantify and describe the diversity of a Floridian subtropical aboveground ant community from monthly sampling across seasons using both contemporary taxonomic diversity metrics and functional diversity metrics. E-64 clinical trial Results show differences in the timing of peaks across different diversity metrics. Species richness and abundances peak in months leading up to wet seasons while functional richness and divergence peak near the end of the wet season. This asynchrony is likely a result of species-specific differences in natural histories and demographic dynamics. While clear temporal dynamics are observed across diversity metrics, differences between wet or dry seasons were lacking for all metrics except functional richness. Fine-scale sampling data of seasonal trends in insect communities compiled from studies like this will be essential tools for future assessments and predictions of insect biodiversity.Calcium acts as a signal and transmits information in all eukaryotes. Encoding machinery consisting of calcium channels, stores, buffers, and pumps can generate a variety of calcium transients in response to external stimuli, thus shaping the calcium signature. Mechanisms for the transmission of calcium signals have been described, and a large repertoire of calcium binding proteins exist that can decode calcium signatures into specific responses. Whilst straightforward as a concept, mysteries remain as to exactly how such information processing is biochemically implemented. Novel developments in imaging technology and genetically encoded sensors (such as calcium indicators), in particular for multi-signal detection, are delivering exciting new insights into intra- and intercellular calcium signaling. Here, we review recent advances in characterizing the encoding, transmission, and decoding mechanisms, with a focus on long-distance calcium signaling. We present technological advances and computational frameworks for studying the specificity of calcium signaling, highlight current gaps in our understanding and propose techniques and approaches for unravelling the underlying mechanisms.Huntington’s disease is a fatal neurodegenerative disease characterized by striatal neurodegeneration, aggregation of mutant Huntingtin and the presence of reactive astrocytes. Astrocytes are important partners for neurons and engage in a specific reactive response in Huntington’s disease that involves morphological, molecular and functional changes. How reactive astrocytes contribute to Huntington’s disease is still an open question, especially because their reactive state is poorly reproduced in experimental mouse models. Here, we show that the JAK2-STAT3 pathway, a central cascade controlling astrocyte reactive response, is activated in the putamen of Huntington’s disease patients. Selective activation of this cascade in astrocytes through viral gene transfer reduces the number and size of mutant Huntingtin aggregates in neurons and improves neuronal defects in two complementary mouse models of Huntington’s disease. It also reduces striatal atrophy and increases glutamate levels, two central clinical outcomes measured by non-invasive magnetic resonance imaging. Moreover, astrocyte-specific transcriptomic analysis shows that activation of the JAK2-STAT3 pathway in astrocytes coordinates a transcriptional program that increases their intrinsic proteolytic capacity, through the lysosomal and ubiquitin-proteasome degradation systems. This pathway also enhances their production and exosomal release of the co-chaperone DNAJB1, which contributes to mutant Huntingtin clearance in neurons. Together, our results show that the JAK2-STAT3 pathway controls a beneficial proteostasis response in reactive astrocytes in Huntington’s disease, which involves bi-directional signalling with neurons to reduce mutant Huntingtin aggregation, eventually improving disease outcomes.